Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(5)2022 05 13.
Article in English | MEDLINE | ID: covidwho-1855817

ABSTRACT

The virus responsible for COVID-19 is designated "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), a highly transmissible and pathogenic coronavirus. Although people of all ages are susceptible to SARS-CoV-2 infection, clinical manifestations may vary with age. The response of neonates to SARS-CoV-2 infection or exposure differs from that of children and adults. Encephalitis due to viral infections in the central nervous system (CNS) and childhood multisystem inflammatory syndrome (MIS-C) are some of the possible neonatal consequences of SARS-CoV-2 infection. This review aims to verify possible neonatal neurological outcomes after SARS-CoV-2 infection. Overall, the cellular and molecular basis of the neurological sequelae of SARS-CoV-2 in neonates remains unclear, and attempts to elucidate the pathophysiology of COVID-19 involve a comparison with the mechanism of other viral diseases. There are a considerable number of case reports in the literature exploring neurological outcomes in the neonatal period. In this review, we present possible effects of SARS-CoV-2 in neonates, emphasizing the importance of monitoring this group. The mechanisms of SARS-CoV-2 entry into the CNS have not yet been fully elucidated, and the potential severity of SARS-CoV-2 infection in neonates, as well as the possible short- and long-term neurological sequelae, remain unclear.


Subject(s)
COVID-19 , COVID-19/complications , Child , Humans , Infant, Newborn , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
2.
Front Med (Lausanne) ; 8: 767291, 2021.
Article in English | MEDLINE | ID: covidwho-1555301

ABSTRACT

Background: The patients with coronavirus disease 2019 (COVID-19) associated with severe acute respiratory distress syndrome (ARDS) may require prolonged mechanical ventilation which often results in lung fibrosis, thus worsening the prognosis and increasing fatality rates. A mesenchymal stromal cell (MSC) therapy may decrease lung inflammation and accelerate recovery in COVID-19. In this context, some studies have reported the effects of MSC therapy for patients not requiring invasive ventilation or during the first hours of tracheal intubation. However, this is the first case report presenting the reduction of not only lung inflammation but also lung fibrosis in a critically ill long-term mechanically ventilated patient with COVID-19. Case Presentation: This is a case report of a 30-year-old male patient with COVID-19 under invasive mechanical ventilation for 14 days in the intensive care unit (ICU), who presented progressive clinical deterioration associated with lung fibrosis. The symptoms onset was 35 days before MSC therapy. The patient was treated with allogenic human umbilical-cord derived MSCs [5 × 107 (2 doses 2 days interval)]. No serious adverse events were observed during and after MSC administration. After MSC therapy, PaO2/FiO2 ratio increased, the need for vasoactive drugs reduced, chest CT scan imaging, which initially showed signs of bilateral and peripheral ground-glass, as well as consolidation and fibrosis, improved, and the systemic mediators associated with inflammation decreased. Modulation of the different cell populations in peripheral blood was also observed, such as a reduction in inflammatory monocytes and an increase in the frequency of patrolling monocytes, CD4+ lymphocytes, and type 2 classical dendritic cells (cDC2). The patient was discharged 13 days after the cell therapy. Conclusions: Mesenchymal stromal cell therapy may be a promising option in critically ill patients with COVID-19 presenting both severe lung inflammation and fibrosis. Further clinical trials could better assess the efficacy of MSC therapy in critically ill patients with COVID-19 with lung fibrosis associated with long-term mechanical ventilation.

3.
Neuroimmunomodulation ; 28(1): 1-21, 2021.
Article in English | MEDLINE | ID: covidwho-1206095

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Neurodevelopmental Disorders/physiopathology , Neuroimmunomodulation/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/physiopathology , COVID-19/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/immunology , Decidua/immunology , Female , Humans , Immune Tolerance/immunology , Infectious Disease Transmission, Vertical , Neuroimmunomodulation/physiology , Placenta/immunology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/physiopathology , SARS-CoV-2 , Umbilical Cord/immunology
SELECTION OF CITATIONS
SEARCH DETAIL